
Source of Acquisition
NASA Ames Research Center

Evolutionary Based Techniques for Fault Tolerant Field Programmable Gate
Arrays

Gregory V. Larchev
University AfSiliated Research Center, UC

Saizta Cruz
NASA Ames Research Center

Moflett Field, CA
glarchev @ mail.arc.nasa.gov

Abstract

The use of SRAM-based Field Programmable Gate
Arrays (FPGAs) is becoming more and more prevalent
in space applications. Comnzercid-grude FPGAs are
potentially susceptible to permanently debilitating
Single-Event Latchups (SELs). Repair methods based
on Evolutionaiy Algorithms may be applied to FPGA
circuits to enable successful fault recovery. This paper
presents the experimental results of applying such
methods to repair four commonly used circuits
(quadrature decoder, 3-by-3-bit multiplier, 3-by-3-bit
adder, 440-7 decoder) into which a number of
simulated faults has been introduced. The results
suggest that evolutionary repair techniques can
improve the process of fault recovery when used
instead oJ or as a supplement to Triple Modular
Redundancy (TMR), wlziclz is currently the
predominant nietlzod for mitigating FPGA faults.

1. Introduction

FPGAs have a number of advantages which make
them particularly suitable for space applications. These
advantages have been noted in both recent research
publications [3] , [131 and manufacturers' literature [11,
[14]. The benefits of FPGAs include reconfiguration
capability to support multiple missions, the potential to
accommodate on-chip and off-chip failures, and the
ability to correct latent design errors after launch.

For some FPGA applications such as Reusable
Launch Vehicles (RLVs), comparatively short mission
durations and low levels of ionizing radiation are
involved. In these cases, conventional TMR techniques
often provide sufficient fault handling coverage. On the

Jason D. Lohn
NASA Anzes Research Center

Moffett Field, CA
jlohn @enzail.avc.nasa.gov

other hand, in-mission reconfigurable FPGAs are
advantageous for deep space probes, satellites, and
extraterrestzial rovers. In these applications, the
radiation exposures, mission durations, and repair
complexities are significanzly greater, prompting the
need for adequate fault coverage. Since the number of
programming cycles in SRAM-based devices is
unlimited, new techniques become feasible for active
recovery through reconfiguration of a compromised
FPGA.

Permanent Single-Event Latchup (SEL) failures
may impact CLBs and/or programmable
interconnections within the FPGA itself. They may also
involve other supporting devices that the FPGA
interfaces with or processes data from. These failure
modes also suggest that the ability to derive an
alternative FPGA configuration in-situ would be
beneficial. Likewise, SEL exposures exist with regards
to the data processing path within the FPGA that is not
involved with the device's programmable configuration.
In the above cases, the FPGA configuration derived at
design time will no longer provide the required
functionality for the damaged part.

Autonomous repair can either provide alternative to
or supplement redundancy as a means of restoring lost
capability. Evolutionary recovery methods attempt to
facilitate repair through reuse of damaged parts. The
fault repair mechanisms discussed in this paper can
improve system reliability regardless of whether
redundancy is utilized or not. If a particular circuit has
been shown to respond well to evolutionary repair, then
evolutionary algorithms can be relied on as a primary
source of fault tolerance. This allows the engineers to
avoid the increased size, weight, and power
consumption traditionally associated with providing
redundant spares. In cases when evolutionary

algorithms have difficulties producing fully functional
repairs, it is still possible to use these methods
alongside traditional redundancy techniques. By
repairing each individual triplet of a triple-redundant
system, it is possible to improve the performance of
each triplet by a large enough margin so that the
majority output is 100% correct (even if each
individual output is not). Another advantage of the
genetic algorithm based methods for the fault repair is
that the characteristics of the failure need not be
precisely diagnosed in order to restore the lost
functionality.

Section 2 of this paper will discuss prior work in
the area of FPGk fault tolerance. Section 3 will
describe the type and number of faults we are looking
to address. Sections 4, 5, 6 and 7 will present the
results of applying evolutionary techniques to repair
faults in 4 different types of circuits. Section 8 will
conclude the paper and discuss future applicable work.

2. Background

Various evolutionary approaches have been
previously proposed for FPGA fault recovery. While
some apply evolutionary algorithms prior to the
occurrence of the fault, others attempt to repair the
fault after its incidence. Three recent examples that
apply evolutionary algorithms to realize fault-tolerant
designs include [5], [4], and [SI. In [5], Miller
examined properties of messy gates whereby evolved
logic functions inherently contain redundant terms as
their functional boundaries change and overlap. In [4],
Canham and Tyrrell compared the fault tolerance of
oscillators evolved by including a range of fault
conditions within the fitness measure during the
evolutionary process. In [8], the evolution of designs
containing redundant capabilities without the designer
having to explicitly specify the redundant parts
themselves was investigated.

The second approach involves restoring the
functionality of Ehe original circuit after introducing the
fault or faults. Some examples of this approach will be
presented in the later sections of this paper.

3. Fault description

The overall goal of the project was to examine the
performance of the evolutionary fault-repair
mechanism for various circuits when a certain
percentage of circuit’s transistors is affected by faults.
Ideally, a number of single-event Iatchups (SELs)
would be replicated in the circuit. Unfortunately, exact
simulation of radiation-induced faults is difficult. First,

there are few studies available on what type of faults
occurs most frequently when a Virtex FPGA is
subjected to cosmic radiation. Second, h e proprietary
nature of the Xilinx Virtex confipration file format
makes it difficult to control the behavior of the
individual transistors on the FPGA. In our case, the
most convenient method of fault simulation is “hard-
wiring” the individual LUT values andlor connections
by setting the corresponding bits inside our
chromosome to 0 or 1. However, simply fixing a
certain percentage of chromosomal bits fails to take
into account the actual distribution of logic and routing
transistors inside the FPGA. It is estimated that on a
Virtex FPGA 80% or more of all transistors are
dedicated to routing. Thus, a larger number of
simulated faults should affect routing rather than logic.
We decided to implement a condition where at least
10% of all the LUTs in the circuit produce a constant
output (either a 0 or a 1). This setup simulates shorting
the output of a LUT to either power or ground. To
complement the simulated routing faults, a smaller
number of logic fauks was also introduced. The final
simulation “hard-wired’’ between 1% and 2% of all the
LUT bits to either 0 or 1, thus simulating either a stuck-
at-0 or a stuck-at-I condition inside the LUT.

4. Quadrature decoder

The quadrature decoder was selected as an initial
case study for testing and refinement of our
evolutionary recovery strategy. Quadrature decoders
provide a means of counting objects passed back and
forth through two beams of light, or alternatively
determining the angular displacement and direction of
rotation of an encoder wheel turning about its axis
(Figure 1).

Figure 1. Quadrature decoder

The quadrature decoder circuit is a 4-state state
machine, with 2 1-bit inputs and 1 1-bit output. It is
implemented using 4 CLBs (or 16 LUTs) on a Virtex
FPGA. In order to test the correctness of the circuit, a
test vector of 700 bit pairs is fed in. A circuit that

produces all 700 output bits correctly is presumed to be
fully functional.

While the total of 16 LUTs are used to implement
the quadrature decoder, the circuit inputs are fed into
the first 4 LUTs (LUTs 0 through 3). LUTs 4 through
15 can have each of their inputs connected to the
output of any other LUT in the circuit. All the outputs
are registered, and feedback is allowed. The total
length of the chromosome representing the quadrature
decoder is 400 bits (Figure 2).

Figure 2. Format of the Quadrature Decoder
chromosome

Our first experiment was to evolve a quadrature
decoder from scratch (Le. with all initial circuit
configmations randornly generated) on a faultless
substrate. 5 runs were performed, with each run limited
to 4000 generations (Table 1). The following
evolutionary parameters were used for the runs:
Population size - 40, Crossover type - two-point,
Crossover probability - SO%, Mutation probability -
0.2% per bit, Tournament size - 3, Elitism - 2.

Table 1. Results of quadrature decoder evolution
from scratch

Initial Final
Initial fitness Final fitness Number of lndivs Per Mutation
fitness % fitness % generations generation probability

Run 1 483 69 700 100 777 40 0002
Run 2 468 6686 700 100 321 40 0002
Run 3 461 6586 700 100 3552 40 0002
Run 4 490 70 683 9757 3999 40 0002
Run 5 458 6543 676 9657 3999 40 0002

AV!3 472 6743 691 8 9883

Median 468 6686 700 100

Several evolutionary runs were performed with just
1 fault in order to test both the fault injection
mechanism and the response of the evolutionary
algorithm to singular faults. While not enough runs
have been performed to obtain statistically significant

results, the general observation is that the algorithm has
little trouble recovering from just 1 fault of any type.

The fault injection approach for introducing
multiple faults was described in Section 3. There are 16
LUTs used in the evolution of the circuit. 2 of those
LUTs would be affected by simulated routing faults,
making them output either a constant 0 or a 1. Such
setup roughly simulates a scenario in which 12.5% of
the circuit area is damaged by the routing faults. In
addition, 5 logic bits (out of 256 total or -2%) would
be subject to a stuck-at fault. The location and the type
of faults (stuck-at-0 or stuck-at-1) were determined
randomly for each run (for both-logic and routing).
Each run took place for at least 10K generations; ail
runs either successfully completed or were terminated
before they reached 20K. The first 3 runs were
performed with a population of 60 individuals; the later
7 runs had a population of 100 individuals.

The generation 0 of each run was seeded with 20
“hand-designed” quadrature decoder individuals, each
of them fully functional when no faults were present.
The rest of the “generation 0” individuals were
randomly created. The only differences between the
runs were the location and the type of faults.

There were 10 runs performed. Out of the 10, 6
runs have produced a complete repair (resulting in a
60% repair rate). For the runs which achieved complete
repair, average number of evaluations required was
66053 (or 660 generations with a population of 100).
The average starting fitness was 76.7%, and the
average ending fitness was 99.5%. Average
improvement in fitness per 1000 evaluations was
2.12%. For the runs where complete repair was
achieved, this improvement was 3.52%. For the runs
where complete repair was not achieved, the
improvement was 0.02% (Table 2).

5.3-by-3-bit Multiplier

The 3-by-3-bit multiplier was the first
combinational circuit tested with our algorithm. Our
motivation for evolving this circuit stems from its
importance in Digital Signal Processing (DSP), where
multipliers are used to construct Finite Impulse
Response (FIR) filters.

Table 2. Results of quadrature decoder evolution with fauIts

Run I
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9
Run 10

Average

Median

Ending
Starting Starting Ending best
best bes t best fitness
fitness fitness % fitness % In

666 95.1429 700 100
462 66 700 100
568 81.1429 675 96.429
503 71.8571 700 100
646 92.2857 700 100
445 63.5714 696 99.429
472 67.4286 699 99.857
654 93.4286 700 100
496 70.8571 700 100
458 65,4286 - 694 99.143

010
Number of Improvement

Number evals. per Number of per 1000
iprovement lmprov % of g e n s gen evals. evaluations

34 4.857143 37 60 2220 2.18790219
238 34 375 60 22500 1.51 11 I1 11
107 15.28571 10814 60 648840 0.02355853
197 28.14286 3489 100 348900 0.08066167
54 7.714286 10 100 IO00 7.71428571
251 35.85714 18256 100 1825600 0.01964129
227 32.42857 13581 1 00 13581 00 0.0238779
46 6.571429 8 100 800 8.21428571
204 29.14286 209 100 20900 1.39439508
236 3371429 12334 100 1233400 0.02733443

537 76.7143 696.4 99.486 159 4

499.5 700 200.5

Other groups in the evolvable hardware community
have also recognized the importance of both FIR filters
and their components. A hardware architecture
necessary to efficiently evolve FIR filter coefficients
was laid out and simulated in [12]. In [9]: Thomson
evolved Verilog netlists of several FlR Primitive
Operator Filters (RR filters which are constructed
without the use of multipliers). In [111, Vassilev used
evolutionary algorithms to produce circuit
configurations for multipliers of various sizes (the
largest one being 4-by-4-bit) which use the minimal
possible number of logic gates. Torresen [lo] evolved
a 5-by-5-bit multiplier in simulation, by using data
partitioning to decompose the problem into smaller
"training sets" and evolving each output bit
individually.

The 3-bit multiplier is a combinational circuit. It
has 6 inputs (3 bits for each of the 2 multiplicands) and
6 outputs (for the 6-bit product). Since the circuit is
fully combinational, all the LUT outputs are
unregistered. Therefore, feedback is not allowed, in
order to prevent metastable conditions within the
circuit. Several stages are used; the inputs into a LUT
at any given stage can only come from the outputs of
LUTs from the earlier stages. The initial template used
to evolve the multiplier is shown in Figure 3.

The circuit can use up to 12 CLBs, or 48 LUTs.
The gene for each LUT is 40 bits long. Out of those 40
bits, 16 bits implement the logic of the LUT, while 24
bits specify the connections of the LUT inputs. The
algorithm has a provision to enforce the rule that
inputs into any given LUT may only come from the
LUTs in previous stages. Aside from the number of
bits devoted to routing, and the method to enforce the

2.1 1970536

complete 3.51710691
Average for

Average for
incomplete 0.02360304

stage rule (which does not affect the chromosome
itself, only the way it is interpreted), the overall
chromosomal structure for the multiplier is the same as
that for the quadrature decoder (Figure 2). The
complete chromosome is 1536 bits l o ~ g . A mxltiplier
circuit has to be able to produce 384 bits correctly in
order to be 100% functional. Therefore, the fitness of
each individual in the population ranges from 0 to 384.

i.

Stage0 , Sage 1 %age 2 ,

15LUTs 4LUTs 4LUTs 4LUT5 8LUTs

Figure 3. Initial template for multiplier evoIution

Before testing the fault-repair capabilities of our
evolutionary algorithm on the 3-bit multiplier, we
wanted to evolve one from scratch on a faultless
substrate. The evolved circuit was later used to seed
the fault-containing runs (Figure 4). The evolution
took 114248 generations with a population of 200
individuais per generation. Other evolutionary
parameters were as following: crossover type - two-
point, crossover probability - 80%, mutation

probability - 0.1% per bit, tournament size - 3, number
of elite individuals - 2.

;@ ig
: - (1 M

Figure 4.3-by-3-bit multiplier evolved from scratch

In order to satisfy the conditions proposed in
Section 3, 5 LUTs (10.4% of the total circuit area) and
12 additional LUT logic bits (1.6% of the total
number) were affected by simulated stuck-at faults. 17
runs were conducted, each run varying in length and/or
initial seed numbers for the randomly determined
functions (Table 3).

Of all the runs performed, none has achieved 100%
repair. The average improvement in correctness over

the course of the run was 12.5% (from 83.3% to
95.8%). Notably, most of the improvement occurs
early in the evohtionary process. The average
improvement after 1000 generations was 10.4% (from
83.3% to 93.7%).

6.3-by-3 bit adder

Along with multipliers, adders are important
building blocks of digital circuits. Adders are even
more essential to the FD? filter design than multipliers
(since it is possible to implement an FIR filter.without
the use of multipliers, but not without the use of
adders).
Because of their usefulness, simplicity, and scalability,
adders have been frequently utilized as sample
problems for testing various evolutionary algorithms.
In [6], MiIler demonstrated several 2-bit adders
evolved in simulation from 2-input Iogic gates and 2-
input MUXes. In [2], Bentley continued Miller's work
by applying constraints to the use of some FPGA
resources, while allowing his genetic algorithm to
make more extensive use of others. And in [7], Shanthi
explored the evolution of fault-tolerant 2-bit adders,
implemented by utilizing empty resources available on
the FF'GA.

-
Table 3. Results of multipIier evoIution in the presence of €aults

Mutation Fit Fit. lmprov
Initial Final probab. after After after

Run Initial fitness Final fitness lmprov Number Individs. Evolution Fault (0.1% by 1000 1000 1000
fitness Yo fitness % YO of gens Per gen seed seed default) gens gen YO gen YO

1
2
3
4
5

6
7
8
9
10

11
12
13
1 4
15

16

1 7

332 86.46
332 86.46
332 86.46
332 86.46
332 86.46

320 83.33
320 83.33
320 83.33
320 83.33
320 83.33

314 81.77
314 81.77
314 81.77
314 81.77
314 81.77

287 74.74

320 83.33

365 95.05 8.594 13256
362 94.27 7.813 2709
364 94.79 8.333 1928
366 95.31 8.854 9892
365 95.05 8.594 1942

379 98.7 15.36

377 98.18 14.84
380 98.96 15.63
374 97.4 14.06

378 98.44 15.1

361 94.01 12.24
364 94.79 13.02
361 94.01 12.24
361 94.01 12.24
359 93.49 11.72

360 93.75 19.01

380 98.96 15.63

10883
26561
I2006
21 529
12361

I 1477
16940
11 354
I0536
17235

22425

222056

IO0
100
100
IO0
100

100
100
100
100
100

100
100
100
100
IO0

100

io0

4371 4371
4372 4371
4373 4371
4374 4371
4375 4371

4371 4372
4372 4372
4373 4372
4374 4372
4375 4372

4371 4373 M: 0.2%
4371 4373
4372 4373
4373 4373
4374 4373

4371 4380

4377 4372

359 93.49 7.031
361 94.01 7.552
362 94.27 7.813
360 93.75 7.292
365 95.05 8.594

371 96.61 13.28
370 96.35 13.02
363 94.53 11.2
373 97.14 13.8
366 95.31 11.98

348 90.63 8.854
348 90.63 8.854
351 91.41 9.635
348 90.63 8.854
351 91.41 9.635

353 91.93 17.19

369 96.09 12.76

360 93.72 10.43 Avg 319.8 83.29 368 95.83 12.55

The 3-by-3-bit adder is a combinational circuit
which has 6 inputs (3 for each number to be added)
and 4 outputs (the sum can be up to 4 bits long.) The
empty template for evolving an adder is exactIy the
same as that for evolving a multiplier (Figure 3). The
adder, however, is a simpler circuit to evolve: it is
comprised of fewer gates, and the outputs have 4 bits
(not 6). Since there are 64 possible input-output
combinations, and each output is 4 bits long, the
fitness of any adder circuit can range from 0 to 256.

Like the multiplier experiment, our first goal was
to evolve an adder from scratch on a faultless
substrate. Again, the evolved circuit was later used in
the runs into which tfie fauits were introduced. Out of
the 6 runs performed, 1 run has evolved a 100%
functional adder in 3487 generations (Figure 5, Table
4).

Figure 5.3-by-3-bit adder evolved from scratch

Table 4. Results of 3-by-3-bit adder evolution from
scratch

Initial Final
Initial fitness Final fitness Number of Indivs. Per
fitness % fitness % generations generation

Run I 150 58.59 251 98.05 10530 200
Run 2 152 59.38 252 98.44 27159 100
Run 3 148 57.81 253 98.83 18276 200
Run 4 150 58.59 250 97.66 10918 100
Run 5 146 57.03 256 100 3487 100
Run 6 150 58.59 253 9883 9750 100

Avg 149.33 58.33 252.5 98.63

Median 150 58.59 252.5 98.63

The evolutionary parameters for the successful run
were the following: Crossover type: two-point,
Crossover probability: 80% per individual, Mutation
probability: 0.1% per bit, Tournament size: 3, Elitism:
2.

The same number of faults was injected into the 3-
bit adder as into the 3-bit multiplier (5 LUT outputs
and 12 LUT logic bits were subject to a stuck-at fault.)
10 runs were performed in order to attempt to recover

the lost functionality. Out of the 10 runs, 2 have
evolved a 100% correct circuit, resulting in a 20%
repair rate (Table 5). All the runs were terminated
between IOK and 17K generations. The evolutionary
parameters were exactly the same as those used when
the adder was evolved from scratch.

7.440-7 decoder

The decoder circuit has 4 inputs and 7 outputs; it is
used to control the individual segments of the 7-
segment LED display. The design is fairly simple; it
requires fewer gates to implement than either a %bit
adder or a 3-bit multiplier. The inputs are the bits for a
number between 0 and 15; the outputs indicate
whether a particular segment should be turned on or
off. Usually 7-segment displays can only show
numbers between 0 and 9; however, our circuit
incorporates numbers 10 through 15 as well.

The template for the evolution of the circuit is
similar to that for the 3-bit multiplier and the 3-bit
adder. There are 16 possible input combinations, each
resulting in a 7-bit long output. Therefore, the fitness
of each circuit can range from 0 to 112.

The 4-to-7 decoder is a smaller circuit than either
the 3-bit multiplier or the 3-bit adder, with fewer gates
required to implement it. In addition, the maximum
fitness of the decoder is smaller than that of the
multiplier or the adder. Hence, the decoder is
considerably easier to evolve. Only one evolutionary
run was conducted to evolve the decoder from scratch.
The best random individual in generation 0 had a
fitness of 68 (60.7%), and a perfect individual was
achieved in 119 generations. The evolutionary
parameters were the same as those used for the
faultless evolution of the 3-bit adder.

The number and the type of faults introduced into
the 4-to-7 decoder are the same as those for the
multiplier and the adder (5 LUT outputs and 12 LUT
logic bits subject to a stuck-at fault). Just Iike in
previous experiments, the generation 0 of each run
contains 20 previously-evolved decoder' individuals
(while the rest of the population is randomly
generated). 10 different runs were performed (the
difference between the runs was in the location and the
type of faults.) 9 runs have produced a fully functional
decoder (90% repair rate). The 10" run was stopped
after approximately 10K generations (Table 6). The
evolutionary parameters were the same as those used
for the faultless run.

Table 5. Results of 3-by-3-bit adder evolution in the presence of faults
% improv

Fitness Fitness Improv. per 10000
Initial Final Num. after after After %improv eva l s fo r the

initial fitness Final fitness improv. of 1000 1000 1000 per 10000 first 1000
fitness ?Lo Fitness % YO gens gens g e n s % g e n s % evals g e n s

Run 1 180 70.31 224 87.5 17.188 15358 217 84.766 14.453 0.111912 1.4453125
Run 2 166 64.84 222 86.719 21.875 11557 215 83.984 19.141 0.189279 1.9140625
Run 3 191 74.61 253 98.828 24.219 10618 245 95.703 21.094 0.228091 2.109375
Run 4 161 62.89 223 87.109 24.219 16385 222 86.719 23.828 0.14781 2.3828125
Run 5 192 75 254 99.219 24.219 12141 247 96.484 21.484 0.199479 2.1484375
Run 6 197 76.95 251 98.047 21.094 11995 216 84.375 7.4219 0.175855 0.7421875
Run 7 195 76.17 224 87.5 11.328 11741 222 86.71 9 10.547 0.096483 1.0546875
Run 8 184 71.88 253 98.828 26.953 10274 241 94.141 22.266 0.262343 2.2265625
Run 9 - 21 1 82.42 256 100 17.578 16379 250- 97.656 15.234 0.107321 1.5234375
Run 10 202 78.91 256 700 21.094 1786 251 98.047 19.141 1.151061 3.9140625

Avg 187.9 73.4 241.6 94.375 20.977

Median 191.5 74.8 252 98.438 21.484

Table 6. Results of 440-7 decoder evolution in the
presence of faults

Irnprov.
Num %per

Initial Initial Final Final of 1000
fitness fitness % Fitness fitness % lrnprov % gens evals

Run1 92 8214286 112 100 1785714 134 133262
Run2 90 8035714 112 100 1964288 111 1.76963
Run3 83 7410714 112 100 2589288 451 057412
Run4 94 8392857 112 100 16 07143 462 0 34787
Run5 80 71 42857 112 100 2857143 405 070547
Run6 91 81 25 112 100 1875 5456 003437
Run7 81 7232143 103 91 964286 1966286 10347 001898
Run8 89 7946429 112 100 2053571 1102 018635
Run 9 88 7857143 112 100 2142857 214 100134
Run10 84 75 112 100 25 753 033201

Avg 872 7785714 111 1 99 196429 21 33929 1944 063027

Avg excluding run 7 1010 06982

Median 885 7901786 112 100 2008929 4565 048099

8, Conclusion and future work

Several observations can be made about the results
of the performed evolutionary runs. First, every single
run produced an improvement in circuit performance.
Most of the improvement took place early in the
process. Second, some circuits respond more readily
than others to evolutionary fault repair. This
responsiveness is usually correlated with the size and
the complexity of the circuit. The repair time and
probability also depend on the number and location of
faults.

Based on the observed results, multiple fault-repair
strategies for the actual space-bound circuits can be
proposed. For each mission, the fault-susceptible
circuits can be analyzed prior to the launch. Each of
those circuits would be subjected to a number of faults
it might be expected to experience over the course of

232.6 90.859 17.461 0.269964 1.74609375

231.5 90.43 19.141 0,182567 1.9140625
the mission. After introducing the faults into the
circuit, an evolutionary fault-repair algorithm would be
applied. The experimental results would indicate the
probability that the functionality of the circuit could be
fully restored in the allotted amount of time. Here, the
availability requirements of the circuit (i.e., maximum
allowed downtime) would need to be taken into
account as well. Based on the testing results, there are
two possibilities for incorporating the evolutionary
algorithm into the mission. If it is determined that the
genetic algorithm is likely to fully recover the
functionality of the damaged circuit, then the
evolutionary methods can be relied on as the only
source of fault tolerance. In this case, size and
complexity savings can be realized from eschewing
redundant moduIes. The pre-launch testing might also
determine that, for a specific circuit, the genetic
algorithm would be unlikely to restore full
functionality with the anticipated number of faults in
the allowed amount of time. In this case, it would still
be possible to utilize evolutionary fault repair
alongside the TMR. It has been observed that
evolutionary fault repair is successful in restoring the
functionality of the tested circuits to above 80% or
90% in virtually every case. Such repair might be
sufficient if TMR is also used; because of the majority
vote, the overall system might produce fully correct
output even if each individual triplet does not.

Just like TMR, evolutionary fault repair system
would add size and complexity to the spacecraft
electronics. However, the increase in circuitry would
be constant relative to the overall number of electronic
components (unlike TILIR, where the increase is linear
relative to the overall circuit area). A single GA-
specific processor could potentially perform
evolutionary repair for every single EPGA-based

circuit aboard the spacecraft (more than one processor
might be required in case the origina,l processor would
ever need to undergo repair itself, but the amount of
overhead is still constant.)

The main benefit of our algorithm is the fact that it
tests evolved solutions on the physical FPGA, as
opposed to software simulation. This enables the
algorithm to take into account the physical features of
the device (faults would fall under that category), and
relaxes the requirement of fault location and isolation.
Certainly every fault-mitigation approach needs to
utilize physical FPGA at some stage of development.
Currently our algorithm recovers the circuit
functionality from the simulated faults. A logical
continuation of this work would include testing the
aIgorithm with physical faults (possibly by subjecting
the FPGA to radiation from a particle accelerator).

There are other potential areas for future work.
Plans call for utilizing more advanced, generative
genetic algorithms in order to increase the
performance of the evolutionary search. Other goals
include testing the algorithm on the actual mission-
ready circuits.

[11 Actel Corporation, "Actel FPGAs Make Significant
Contribution To Global Space Exploration," Press Release,
August 30, 1999. available at:
http://www.acte!.com/companv/press/l999ur/SpaceConlribu
tion.htm1

[2] Peter J. Bentley, Timothy G.W. Gordon, Jungwon Kim,
and Sanjeev Kumar, "New Trends in Evolutionary
Computation.'' In Proceedings of CEC 2001, the Congress
on Evolutionary Computation, Seoul, Korea, May 27-30,
2001 IEEE Press. RN/00/68

[3] N. W. Bergmann and P. R. Sutton, "A High-Performance
Computing Module for a Low Earth Orbit Satellite using
Reconfigurable Logic," in Proceedings of Military and
Aerospace Applications of Programmable Devices and
Technologies Conference, September 15-16, 1998,
Greenbelt, MD.

[4] R. 0. Canham and A. M. Tyrrell, "Evolved Fault
Tolerance in Evolvable Hardware," in Proceedings of JEEE
Congress on Evolutionary Computation, 2002, Honolulu,
HI.

[5] 5. F. Miller and M. Hartmann, "Evolving messy gates €or
fault tolerance: some preliminary findings," in Proceedings
of the Third NASA/DoD Workshop on EvolvabIe Hardware,
July 12-14,2001, Long Beach, CA.

[6] J. F. Miller, P. Thornson, and T. Fogarty, "Designing
Electronic Circuits Using Evolutionarv Alrrorithms.
Arithmetic Circuits: A Case Studv", chapter 6, in Genetic
Algorithms and Evolution Stategies in Engineering and
Computer Science: Recent Advancements and Industrial
Applications, published by Wiley, 1997 @Jo\ember).

[7] A.P.Shanthi, Balaji Vijayan, Manivel Rajendran,
Senthilkumar Veluswami and Ranjmi
"Autornatic.GA Based Evolution of Fault Tolerant Digital
Circuits", In Lip0 Wang, et al., editor, 4th Asia - Pacific
Conference on Simulated Evolution and Learning (SEAL
02) VOI. 2, NOV. 2 0 0 2 , ~ ~ . 845-849.

[SI A. Thompson, "Evolving Fault Tolerant Systems," in
Proceedings of 1 st IEEDEEE International Conference on
Genetic Algorithms in Engineering Systems, IEE Conf. Pub.
No 414, pp 524-529.

[SI R.Thonson and T.Arslan, "Evolvable Hardware for the
Generation of Sequential Filter Circuits," in Proceedings of
The 2002 NASA/DOD Conference on Evolvable Hardware,
July 15-18, 2002, Alexandria, VA.

[101 J.Torresen, "Evolving Multiplier Circuits by Training
Set and Training Vector Partitioning," in Proceedings of
Evolvable Systems: From Biology to Hardware, 5th
International Conference, ICES 2003, March 2003,
Trondheim, Norway.

Ell] V.K.Vassilev, D.Job and J.F.Miller, "Towards the
Automatic Design of More Efficient Digital Circuits," in
Proceedings of The Second NASADOD Workshop on
Evolvable Hardware, July 13-15,2000, Palo Alto, CA.

[121 K.A.Vinger and J.Torresen, "Implementing Evolution
of FIR-Filters Efficiently in an FPGA," in Proceedings of
The 2003 NASA/DOD Conference on Evolvable Hardware,
July 9-1 I , 2003, Chicago, IL.

[13] E. B. Wells and S. M. Loo, "On the Use of Distributed
Reconfigurable Hardware in
Launch Control Avionics," in Proceedings of Digital
Avionics Systems Conference, October 14-18, 2001,
Daytona Beach, FL.

[I41 Xilinx Inc., "Xilinx Radiation Hardened Virtex FPGAs
Shipping To JPL Mars Mission And Other Space
Programs,IL Press Release, May 15,2001.

